25th Anniversary Student Colloquium Abstract Guidelines

Here are the requirements for the format of Colloquium abstracts. For an example, please see the abstract attached. Please make sure your abstract meets all of these requirements before submitting.

1. Use the Times New Roman font, size 10 for the entire abstract.
2. Limit your abstract text to a maximum of 500 words. With this smaller font size, the entire abstract - including title and authors - should be approximately half a page.
3. Your abstract title should be in Bold and All Caps.
4. Include all contributors in the author’s section beneath the title. At the least, this should include both your name and your advisor’s name. Include only the first author’s email address as well at the end of this section. If all authors are from the same department, only one address is required. If all authors are from the UTEP geology department, the address line should look like the following:

Sarah N. Cervera and Terry L. Pavlis
Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968
sncervera@miners.utep.edu

If your abstract contains several authors from different departments or institutions, then the address line should be in the following format:

Chris Benker1, John C. White2, Minghua Ren1, and Elizabeth Y. Anthony1
1Department of Geological Sciences, University of Texas El Paso, El Paso, TX 79968
2Department of Geography & Geology, Eastern Kentucky University, Richmond, KY 40475
scbenker@miners.utep.edu

Please note that the numbers linking the institution addresses to respective authors are in superscript.

5. Spelling and grammar will not be checked by the abstract volume editor. This is your responsibility. If it is past the submission deadline, it is too late to change anything.
6. If you absolutely must site a reference within your abstract, do not provide a full citation of the reference at the end of your abstract. There is not enough room for this in the volume and any full citation included with submitted abstracts will be left out.

Please submit your abstract to Anthony Wamalwa amwamalwa@miners.utep.edu in Word document format. The deadline is 5 p.m. Monday, Jan. 24th, 2011. Abstracts will be sent back until they meet the formatting requirements listed above.
APPLICATION OF LIDAR, ALSM, SAR AND AERIAL PHOTOGRAPHY TO RESOLVE BEDROCK STRUCTURE IN AREAS OF POOR EXPOSURE: EXAMPLES FROM THE KATALLA AREA, ALASKA, AND KAMCHATKA PENINSULA, RUSSIA.

Sarah N. Cervera and Terry L. Pavlis
Department of Geological Sciences, University of Texas at El Paso, El Paso, Texas 79968
sncervera@miners.utep.edu

LIDAR, ALSM, SAR data and various forms of aerial photography allow construction of improved regional maps of bedding, and fault traces in areas of poor outcrop. These regional maps can be used to develop 3D and 4D models either directly through 3D visualization or through reconstruction of cross-sections to develop a 3D model. With these remote sensing methods geological features such as fault scarps, bedding and fault traces can be identified and accurately traced in three dimensions. Once these geologic features are identified they can be studied through structural analysis. 3D and 4D models can be compared to geologic data collected in the field, or geologic data can be overlaid or plotted on these models to produce an accurate reconstruction of the structural history of the area in question. These kinds of data are being analyzed in two settings: the Katalla area in the St. Elias Mountains of southern Alaska, the Kamchatka Peninsula in Russia, with future work planned in the Death Valley region of California. Here we emphasize results from draping of high resolution aerial photography onto a LIDAR DEM in the southern Alaskan data set acquired during the St. Elias Erosion and tectonics project. The resultant 3D visualization, together with bare-ground LIDAR terrain models provide unprecedented abilities to visualize the geology in this complexly deformed terrain, as well as provide insights into the origins of large numbers of surface ruptures in the region.