4.6

GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS
What You Should Learn

• Sketch the graphs of tangent functions.

• Sketch the graphs of cotangent functions.

• Sketch the graphs of secant and cosecant functions.

• Sketch the graphs of damped trigonometric functions.
Graph of the Tangent Function
Graph of the Tangent Function

The tangent function is odd, \(\tan(-x) = -\tan x \).

The graph of \(y = \tan x \) is **symmetric with respect to the origin**.

\[
\tan x = \frac{\sin x}{\cos x}
\]

tangent is undefined for values at which \(\cos x = 0 \).

Two such values are \(x = \pm \pi/2 \approx \pm 1.5708 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\frac{\pi}{2})</th>
<th>(-1.57)</th>
<th>(-1.5)</th>
<th>(-\frac{\pi}{4})</th>
<th>0</th>
<th>(0)</th>
<th>(\frac{\pi}{4})</th>
<th>1.5</th>
<th>1.57</th>
<th>(\frac{\pi}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tan x)</td>
<td>Undef.</td>
<td>(-1255.8)</td>
<td>(-14.1)</td>
<td>(-1)</td>
<td>0</td>
<td>1</td>
<td>14.1</td>
<td>1255.8</td>
<td>Undef.</td>
<td></td>
</tr>
</tbody>
</table>
Graph of the Tangent Function

The graph of $y = \tan x$ has *vertical asymptotes* at $x = \pi/2$ and $x = -\pi/2$.
Graph of the Tangent Function

The period of the tangent function is π, vertical asymptotes also occur when $x = \pi/2 + n\pi$, where n is an integer.

The domain of the tangent function is the set of all real numbers other than $x = \pi/2 + n\pi$, and the range is the set of all real numbers.

Sketching the graph of $y = a \tan(bx - c)$ is similar to sketching the graph of $y = a \sin(bx - c)$ in that you locate key points that identify the intercepts and asymptotes.
Graph of the Tangent Function

Two consecutive vertical asymptotes can be found by solving the equations

\[bx - c = -\frac{\pi}{2} \quad \text{and} \quad bx - c = \frac{\pi}{2}. \]

The midpoint between two consecutive vertical asymptotes is an x-intercept of the graph.

The period of the function \(y = a \tan(bx - c) \) is the distance between two consecutive vertical asymptotes.
The amplitude of a tangent function is not defined.

After plotting the asymptotes and the x-intercept, plot a few additional points between the two asymptotes and sketch one cycle.

Finally, sketch one or two additional cycles to the left and right.
Example 1 – *Sketching the Graph of a Tangent Function*

Sketch the graph of $y = \tan(x/2)$.

Solution:

By solving the equations

\[
\frac{x}{2} = -\frac{\pi}{2} \quad \text{and} \quad \frac{x}{2} = \frac{\pi}{2}
\]

\[x = -\pi \quad \text{and} \quad x = \pi\]

you can see that two consecutive vertical asymptotes occur at $x = -\pi$ and $x = \pi$.
Example 1 – Solution

Between these two asymptotes, plot a few points, including the x-intercept, as shown in the table.

<table>
<thead>
<tr>
<th>x</th>
<th>$-\pi$</th>
<th>$-\frac{\pi}{2}$</th>
<th>0</th>
<th>$\frac{\pi}{2}$</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tan\frac{x}{2}$</td>
<td>Undef.</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>Undef.</td>
</tr>
</tbody>
</table>
Example 1 – Solution

Three cycles of the graph are shown in Figure 4.60.

Figure 4.60
Graph of the Cotangent Function
The graph of the cotangent function is similar to the graph of the tangent function. It also has a period of π. However, from the identity

$$y = \cot x = \frac{\cos x}{\sin x}$$

you can see that the cotangent function has vertical asymptotes when $\sin x$ is zero, which occurs at $x = n\pi$, where n is an integer.
The graph of the cotangent function is shown in Figure 4.62. Note that two consecutive vertical asymptotes of the graph of $y = a \cot(bx - c)$ can be found by solving the equations $bx - c = 0$ and $bx - c = \pi$.

![Graph of the Cotangent Function](image)

Figure 4.62

Period: π

Domain: All $x \neq n\pi$

Range: $(-\infty, \infty)$

Vertical Asymptotes: $x = n\pi$

Symmetry: Origin
Example 3 – Sketching the Graph of a Cotangent Function

Sketch the graph of \(y = 2 \cot \frac{x}{3} \).

Solution:

By solving the equations

\[
\frac{x}{3} = 0 \quad \quad \quad \frac{x}{3} = \pi
\]

\(x = 0 \quad \quad \quad x = 3\pi \)

you can see that two consecutive vertical asymptotes occur at \(x = 0 \) and \(x = 3\pi \).
Example 3 – Solution

Between these two asymptotes, plot a few points, including the x-intercept, as shown in the table.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>$\frac{3\pi}{4}$</th>
<th>$\frac{3\pi}{2}$</th>
<th>$\frac{9\pi}{4}$</th>
<th>3π</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2\cot\frac{x}{3}$</td>
<td>Undef.</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td>Undef.</td>
</tr>
</tbody>
</table>
Example 3 – Solution

Three cycles of the graph are shown in Figure 4.63. Note that the period is 3π, the distance between consecutive asymptotes.
Graphs of the Reciprocal Functions
The graphs of the two remaining trigonometric functions can be obtained from the graphs of the sine and cosine functions using the reciprocal identities

\[\csc x = \frac{1}{\sin x} \quad \text{and} \quad \sec x = \frac{1}{\cos x}. \]

For instance, at a given value of \(x \), the \(y \)-coordinate of \(\sec x \) is the reciprocal of the \(y \)-coordinate of \(\cos x \).

Of course, when \(\cos x = 0 \), the reciprocal does not exist. Near such values of \(x \), the behavior of the secant function is similar to that of the tangent function.
Graphs of the Reciprocal Functions

In other words, the graphs of

\[
\tan x = \frac{\sin x}{\cos x} \quad \text{and} \quad \sec x = \frac{1}{\cos x}
\]

have vertical asymptotes at \(x = \pi/2 + n\pi \), where \(n \) is an integer, and the cosine is zero at these \(x \)-values. Similarly,

\[
\cot x = \frac{\cos x}{\sin x} \quad \text{and} \quad \csc x = \frac{1}{\sin x}
\]

have vertical asymptotes where \(\sin x = 0 \)—that is, at \(x = n\pi \).
To sketch the graph of a secant or cosecant function, you should first make a sketch of its reciprocal function.

For instance, to sketch the graph of $y = \csc x$, first sketch the graph of $y = \sin x$.

Then take reciprocals of the y-coordinates to obtain points on the graph of $y = \csc x$.
Graphs of the Reciprocal Functions

This procedure is used to obtain the graphs shown in Figure 4.64.

Figure 4.64

Period: 2π

Domain: All $x \neq n\pi$

Range: $(-\infty, -1] \cup [1, \infty)$

Vertical Asymptotes: $x = n\pi$

Symmetry: Origin

Period: 2π

Domain: All $x \neq \frac{\pi}{2} + n\pi$

Range: $(-\infty, -1] \cup [1, \infty)$

Vertical Asymptotes: $x = \frac{\pi}{2} + n\pi$

Symmetry: y-axis
Graphs of the Reciprocal Functions

In comparing the graphs of the cosecant and secant functions with those of the sine and cosine functions, note that the “hills” and “valleys” are interchanged.

For example, a hill (or maximum point) on the sine curve corresponds to a valley (a relative minimum) on the cosecant curve, and a valley (or minimum point) on the sine curve corresponds to a hill (a relative maximum) on the cosecant curve, as shown in Figure 4.65.
Graphs of the Reciprocal Functions

Additionally, x-intercepts of the sine and cosine functions become vertical asymptotes of the cosecant and secant functions, respectively (see Figure 4.65).
Example 4 – Sketching the Graph of a Cosecant Function

Sketch the graph of \(y = 2 \csc \left(x + \frac{\pi}{4} \right) \).

Solution:

Begin by sketching the graph of

\[y = 2 \sin \left(x + \frac{\pi}{4} \right). \]

For this function, the amplitude is 2 and the period is \(2\pi \).
By solving the equations

\[x + \frac{\pi}{4} = 0 \quad \text{and} \quad x + \frac{\pi}{4} = 2\pi \]

\[x = -\frac{\pi}{4} \quad \text{and} \quad x = \frac{7\pi}{4} \]

you can see that one cycle of the sine function corresponds to the interval from \(x = -\pi/4 \) to \(x = 7\pi/4 \).
Example 4 – Solution

The graph of this sine function is represented by the gray curve in Figure 4.66.

\[y = 2 \csc \left(x + \frac{\pi}{4} \right) \]

\[y = 2 \sin \left(x + \frac{\pi}{4} \right) \]
Because the sine function is zero at the midpoint and endpoints of this interval, the corresponding cosecant function

\[y = 2 \csc\left(x + \frac{\pi}{4}\right) = 2\left(\frac{1}{\sin[x + (\pi/4)]}\right) \]

has vertical asymptotes at \(x = -\pi/4, \ x = 3\pi/4, \ x = 7\pi/4 \) etc.

The graph of the cosecant function is represented by the black curve in Figure 4.66.
Damped Trigonometric Graphs
A *product* of two functions can be graphed using properties of the individual functions.

For instance, consider the function

\[f(x) = x \sin x \]

as the product of the functions \(y = x \) and \(y = \sin x \).

Using properties of absolute value and the fact that |\(\sin x \)| \(\leq 1\), you have \(0 \leq |x| |\sin x| \leq |x|\).
Damped Trigonometric Graphs

Consequently,

$$-|x| \leq x \sin x \leq |x|$$

which means that the graph of $f(x) = x \sin x$ lies between the lines $y = -x$ and $y = x$.

Furthermore, because

$$f(x) = x \sin x = \pm x \quad \text{at} \quad x = \frac{\pi}{2} + n\pi$$

and

$$f(x) = x \sin x = 0 \quad \text{at} \quad x = n\pi$$

the graph of f touches the line $y = -x$ or the line $y = x$ at $x = \pi/2 + n\pi$ and has x-intercepts at $x = n\pi$.
A sketch of f is shown in Figure 4.68. In the function $f(x) = x \sin x$, the factor x is called the **damping factor**.
Example 6 – *Damped Sine Wave*

Sketch the graph of \(f(x) = e^{-x} \sin 3x \).

Solution:

Consider \(f(x) \) as the product of the two functions

\[
y = e^{-x} \quad \text{and} \quad y = \sin 3x
\]

each of which has the set of real numbers as its domain.

For any real number \(x \), you know that \(e^{-x} \geq 0 \) and \(|\sin 3x| \leq 1 \).

So, \(e^{-x} |\sin 3x| \leq e^{-x} \), which means that

\[
-e^{-x} \leq e^{-x} \sin 3x \leq e^{-x}.
\]
Furthermore, because

\[f(x) = e^{-x} \sin 3x = \pm e^{-x} \quad \text{at} \quad x = \frac{\pi}{6} + \frac{n\pi}{3} \]

and

\[f(x) = e^{-x} \sin 3x = 0 \quad \text{at} \quad x = \frac{n\pi}{3} \]

the graph of \(f \) touches the curves \(y = -e^{-x} \) and \(y = e^{-x} \) at \(x = \pi/6 + n\pi/3 \) and has intercepts at \(x = n\pi/3 \).
A sketch is shown in Figure 4.69.

Figure 4.69
Damped Trigonometric Graphs

Figure 4.70 summarizes the characteristics of the six basic trigonometric functions.
Damped Trigonometric Graphs

Figure 4.70

\[y = \csc x = \frac{1}{\sin x} \]

- **Domain:** All \(x \neq n\pi \)
- **Range:** \(-\infty, -1\] \(\cup\] [1, \(\infty\))
- **Period:** \(2\pi\)

\[y = \sec x = \frac{1}{\cos x} \]

- **Domain:** All \(x \neq \frac{\pi}{2} + n\pi \)
- **Range:** \(-\infty, -1\] \(\cup\] [1, \(\infty\))
- **Period:** \(2\pi\)

\[y = \cot x = \frac{1}{\tan x} \]

- **Domain:** All \(x \neq n\pi \)
- **Range:** \(-\infty, \infty\)
- **Period:** \(\pi\)