What You Should Learn

• Recognize partial fraction decompositions of rational expressions.

• Find partial fraction decompositions of rational expressions.
Introduction
Partial fraction decomposition
of \(\frac{x + 7}{x^2 - x - 6} \)

\[
\frac{x + 7}{x^2 - x - 6} = \frac{2}{x - 3} + \frac{-1}{x + 2}.
\]

Partial fraction Partial fraction

Introduction

Decomposition of $N(x)/D(x)$ into Partial Fractions

1. Divide if improper: If $N(x)/D(x)$ is an improper fraction [degree of $N(x)$ ≥ degree of $D(x)$], divide the denominator into the numerator to obtain

$$\frac{N(x)}{D(x)} = \text{(polynomial)} + \frac{N_1(x)}{D(x)}$$

and apply Steps 2, 3, and 4 below to the proper rational expression $N_1(x)/D(x)$. Note that $N_1(x)$ is the remainder from the division of $N(x)$ by $D(x)$.

2. Factor the denominator: Completely factor the denominator into factors of the form

$$(px + q)^m \quad \text{and} \quad (ax^2 + bx + c)^n$$

where $(ax^2 + bx + c)$ is irreducible.

3. Linear factors: For each factor of the form $(px + q)^m$, the partial fraction decomposition must include the following sum of m fractions.

$$\frac{A_1}{(px + q)} + \frac{A_2}{(px + q)^2} + \cdots + \frac{A_m}{(px + q)^m}$$

4. Quadratic factors: For each factor of the form $(ax^2 + bx + c)^n$, the partial fraction decomposition must include the following sum of n fractions.

$$\frac{B_1x + C_1}{ax^2 + bx + c} + \frac{B_2x + C_2}{(ax^2 + bx + c)^2} + \cdots + \frac{B_nx + C_n}{(ax^2 + bx + c)^n}$$
Partial Fraction Decomposition
Example 1 – Distinct Linear Factors

Write the partial fraction decomposition of $\frac{x + 7}{x^2 - x - 6}$.

Solution:

$x^2 - x - 6 = (x - 3)(x + 2)$

$$\frac{x + 7}{x^2 - x - 6} = \frac{A}{x - 3} + \frac{B}{x + 2}$$

Write form of decomposition.

$x + 7 = A(x + 2) + B(x - 3)$

Basic equation
Example 1 – Solution

For instance, let \(x = -2 \). Then,

\[
-2 + 7 = A(-2 + 2) + B(-2 - 3)
\]

Substitute \(-2\) for \(x \).

\[
5 = A(0) + B(-5)
\]

\[
5 = -5B
\]

\[-1 = B.\]

To solve for \(A \), let \(x = 3 \) and obtain

\[
3 + 7 = A(3 + 2) + B(3 - 3)
\]

Substitute \(3\) for \(x \).

\[
10 = A(5) + B(0)
\]
Example 1 – Solution

\[10 = 5A \]

\[2 = A. \]

So, the partial fraction decomposition is

\[\frac{x + 7}{x^2 - x - 6} = \frac{2}{x - 3} + \frac{-1}{x + 2}. \]
Or...

\[x + 7 = A(x + 2) + B(x - 3) \]

\[x + 7 = Ax + 2A + Bx - 3B \]

\[x + 7 = (A + B)x + (2A - 3B) \]

\[
\begin{cases}
A + B = 1 \\
2A - 3B = 7
\end{cases}
\]

\[
\begin{cases}
A = 2 \\
B = -1
\end{cases}
\]
Partial Fraction Decomposition

Guidelines for Solving the Basic Equation

Linear Factors

1. Substitute the *zeros* of the distinct linear factors into the basic equation.

2. For repeated linear factors, use the coefficients determined in Step 1 to rewrite the basic equation. Then substitute *other* convenient values of x and solve for the remaining coefficients.

Quadratic Factors

1. Expand the basic equation.

2. Collect terms according to powers of x.

3. Equate the coefficients of like terms to obtain equations involving A, B, C, and so on.

4. Use a system of linear equations to solve for A, B, C, . . .
Example

Write the partial fraction decomposition of \(\frac{8x^3 + 13x}{(x^2 + 2)^2} \)

Solution:

It is proper fraction.

\[
\frac{8x^3 + 13x}{(x^2 + 2)^2} = \frac{Ax + B}{x^2 + 2} + \frac{Cx + D}{(x^2 + 3)^2}
\]

\[
\Rightarrow 8x^3 + 13x = (Ax + B)(x^2 + 2) + (Cx + D)
\]

\[
= Ax^3 + 2Ax + Bx^2 + 2B + Cx + D
\]

\[
= Ax^3 + Bx^2 + (2A + C)x + (2B + D)
\]

\[
\Rightarrow \begin{cases}
A = 8 \\
B = 0 \\
2A + C = 13 \\
2B + D = 0
\end{cases} \quad \Rightarrow \begin{cases}
A = 8 \\
B = 0 \\
C = -3 \\
C = 0
\end{cases}
\]
Therefore,

\[
\frac{8x^3 + 13x}{(x^2 + 2)^2} = \frac{Ax + B}{x^2 + 2} + \frac{Cx + D}{(x^2 + 3)^2} = \frac{8x}{x^2 + 2} + \frac{-3x}{(x^2 + 3)^2}
\]
Example

Write the partial fraction decomposition of \(\frac{3x^2 + 4x + 4}{x^3 + 4x} \).

Solution:

\(x^3 + 4x = x(x^2 + 4) \)

It is proper fraction

\[
\frac{3x^2 + 4x + 4}{x^3 + 4x} = \frac{A}{x} + \frac{Bx + C}{x^2 + 4}
\]

\[
\Rightarrow 3x^2 + 4x + 4 = A(x^2 + 4) + (Bx + C)x
\]

\[
= (A + B)x^2 + Cx + 4A
\]

\[
\Rightarrow \begin{cases}
A + B = 3 \\
C = 4 \\
4A = 4
\end{cases} \Rightarrow \begin{cases}
A = 1 \\
B = 2 \\
C = 4
\end{cases}
\]
Therefore,

\[
\frac{3x^2 + 4x + 4}{x^3 + 4x} = \frac{A}{x} + \frac{Bx + C}{x^2 + 4} = \frac{1}{x} + \frac{2x + 4}{x^2 + 4}
\]
Partial Fraction Decomposition

\[\frac{N(x)}{D(x)} = \frac{2x^3 + x^2 - 7x + 7}{x^2 + x - 2} \]